Incomplete q-Chebyshev polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetrized Chebyshev Polynomials

We define a class of multivariate Laurent polynomials closely related to Chebyshev polynomials and prove the simple but somewhat surprising (in view of the fact that the signs of the coefficients of the Chebyshev polynomials themselves alternate) result that their coefficients are non-negative. As a corollary we find that Tn(c cos θ) and Un(c cos θ) are positive definite functions. We further s...

متن کامل

Polynomials Related to Generalized Chebyshev Polynomials

We study several classes of polynomials, which are related to the Chebyshev, Morgan-Voyce, Horadam and Jacobsthal polynomials. Thus, we unify some of well-known results.

متن کامل

On integer Chebyshev polynomials

We are concerned with the problem of minimizing the supremum norm on [0, 1] of a nonzero polynomial of degree at most n with integer coefficients. We use the structure of such polynomials to derive an efficient algorithm for computing them. We give a table of these polynomials for degree up to 75 and use a value from this table to answer an open problem due to P. Borwein and T. Erdélyi and impr...

متن کامل

Cryptography using Chebyshev polynomials

We consider replacing the monomial xn with the Chebyshev polynomial Tn(x) in the Diffie-Hellman and RSA cryptography algorithms. We show that we can generalize the binary powering algorithm to compute Chebyshev polynomials, and that the inverse problem of computing the degree n, the discrete log problem for Tn(x) mod p, is as difficult as that for xn mod p.

متن کامل

On Chebyshev Polynomials of Matrices

The mth Chebyshev polynomial of a square matrix A is the monic polynomial that minimizes the matrix 2-norm of p(A) over all monic polynomials p(z) of degree m. This polynomial is uniquely defined if m is less than the degree of the minimal polynomial of A. We study general properties of Chebyshev polynomials of matrices, which in some cases turn out to be generalizations of well known propertie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2018

ISSN: 0354-5180,2406-0933

DOI: 10.2298/fil1810599e